Urban Agriculture in Baltimore, MD

Neith Little, University Of Maryland Extension, Urban Agriculture Extension Agent

LARC

9/23/2020
How do we define urban agriculture?

Definitions I have read are broad.*

Wagstaff and Wortmann (2015) put it most concisely:

Urban agriculture is “all forms of agricultural production (food and non-food products) occurring within or around cities.”

*Food and Agriculture Organization of the UN, Diekmann et al. 2016, Dimitri et al. 2015, Hendrickson and Porth 2012, Oberholzer et al. 2014

For more: https://go.umd.edu/whaturbanag

University of Maryland Extension programs are equal access
Home gardens
Community gardens with personal beds
Community gardens that also sell produce
Chef’s gardens
Not-for-profit urban farms
For-profit urban farms
School gardens
Communal gardens with communal beds
Market-oriented gardens
University of Maryland Extension programs are equal access
Strength to Love 2, Baltimore, MD
Photo by Neith Little, UMD Extension

University of Maryland Extension programs are equal access
Miss Maxine’s Garden at Pleasant Hope Baptist Church, the Black Church Food Security Network
Photo by Neith Little, UMD Extension

University of Maryland Extension programs are equal access
The Greener Garden, LLC, Baltimore, MD
Photo by Neith Little, UMD Extension

University of Maryland Extension programs are equal access
Real Food Farm, Baltimore, MD
Photo by Neith Little, UMD Extension

University of Maryland Extension programs are equal access
JHU-CLF Food Systems Lab, Baltimore, MD
Photo by Neith Little, UMD Extension
Urban Pastoral, Baltimore, MD
Photo by Neith Little, UMD Extension

University of Maryland Extension programs are equal access
Pattison et al. (2018) LEDs for photons, physiology, and food.
Up Top Acres, Washington, DC
Photo by Neith Little, UMD Extension

University of Maryland Extension programs are equal access
What does urban agriculture have to do with hunger?

What we have:

“Food deserts”
“Healthy food priority areas”
“Food apartheid”

1 in 4 Baltimore residents live in a food desert

(Buczynski et al. 2015)

What we want:

“Food security”
“Food justice”
“Food sovereignty”

What does urban agriculture have to do with hunger?
Hunger is not caused by a lack of food, but by a lack of power.

Paraphrased from Frances Moore Lappé, Karen Washington, and a lot of other wise people.
Urban gardening
Self-sufficiency

Urban farming
Economic power

Image credits: © University of Maryland--AGNR Image Library

University of Maryland Extension programs are equal access
Urban farming
Economic power

Who benefits?

How can urban farmers balance mission to feed people with economic realities of making a living?

Image credits: © University of Maryland--AGNR Image Library
Who benefits?

Why do we have to talk about race and class?

“A failure to examine urban agriculture’s role in either supporting or dismantling unjust structures may perpetuate an inequitable system*”

(Reynolds 2015).

*Cranston 2017
Why are you farming?
Is what you’re doing going to achieve that goal?

To feed people?
Miss Maxine’s Garden at Pleasant Hope Baptist Church; the Black Church Food Security Network

To earn a living?
Walker Marsh Tha Flower Factory

To employ people?
Janice Spells-Bell, Strength to Love 2.

University of Maryland Extension programs are Equal Access
Growing food sustainably has costs

1,000 lbs tomatoes, at $2/lb = $2,000
-$10/hr for 8 hrs preparing beds = $1920
-$10/hr for 8 hrs planting = $1840
-$10/hr for 16 hrs staking = $1760
-$10/hr for 8 hrs/wk watering, weeding, and harvesting = $480
-$10/hr for 6 hrs/wk at farmers market = -$600

A helpful urban farm case study:

Lennon et al. (2018). Sowing the seeds of food justice: A guide for farmers who want to supply low-income communities while maintaining financial sustainability. NESARE
Photo of Whitelock Community Farm, taken by Neith Little, UMD Extension

Photos in header of Pleasant Hope Baptist Church, Up Top Acres, and Envista Farms at Southern Friendship Missionary Baptist Church, taken by Neith Little, UMD Extension

This website is under construction. Keep an eye out for new resources coming soon!
Please fill out teaching evaluation: https://go.umd.edu/AGTEACH

Neith Little, nglittle@umd.edu
Supplemental slides for potential questions
How to decide what to grow (in a market garden)

- What do you want to eat?
- What can you grow efficiently with the resources and space you have?
- Who are your customers and what do they want to buy locally?
- What can you grow that is not already available in the local market?
- What can you grow that is best suited to direct marketing?
 - Quality is best when very fresh
 - Does not ship well
 - Has ties to local culture / history
- What can you sell at a price that will cover your costs?

https://extension.umd.edu/womeninag/what-grow-urban-market-garden
Water access

• Depends on local municipality (usually Department of Public Works)

• If a building as demolished, does the water line still exist?

• Rain water capture is a good sustainability practice, but
 • How will you store it?
 • How will you assess and reduce health risks?
 • https://go.umd.edu/rainwater
What to fill your beds with?

https://extension.umd.edu/hgic/topics/soil-fill-raised-beds

Soil vs. growing media

Image credit: Purdue University
Types of soil contaminants

Heavy metals: lead, arsenic, cadmium, chromium, copper, mercury, selenium, zinc

Organic compounds: solvents, pesticides, creosote, petroleum
Soil contamination risk assessment

Additional resources:

• Section of urban ag guide on soil contamination risk assessment:
 https://go.umd.edu/soilcontamination

• Recorded webinar on soil contamination risk assessment:
 https://go.umd.edu/soilrisk
1. Knowledge is power

Don’t panic, but don’t be complacent either

Find out your site history, and get your soil tested

Top: Church garden, Baltimore, photo by Neith Little, UMD Extension
Bottom: Apple orchard, photo by Edwin Remsberger, © University of Maryland--AGNR Image Library
2. Collect a representative sample

Consider high risk areas

University of Maryland Extension programs are Equal Access

Image Credit: Google Maps
2. Collect a representative sample

Sample should be representative

Take multiple cores from each “unit” and mix well

Collect 2-3” deep

Check with lab for drying and mailing instructions
3. “Threshold” values depend on contaminant, land use, and state

No federal standards for **agricultural soil** (EPA 2011).

EPA sets standards for “**brownfield**” remediation and residential use. These were not intended for agriculture, but they’re what is most commonly used.

Clipper Mill brownfield remediation, Baltimore. From EPA success stories report: https://www.epa.gov/brownfields/
3. “Threshold” values depend on contaminant, land use, and state

Current EPA threshold for lead is <400 ppm for bare soil in play areas and <1,200 ppm for bare soil in other residential areas (EPA 2001).

Local regulators may set their own thresholds.

Baltimore City is considering a draft soil safety policy for those seeking a use permit for a community garden or farm, under the new urban agriculture zoning code. It’s based on EPA thresholds.
4. Make sure lab test and “threshold” use the same methods

All soil analysis methods have two basic steps:
- Extract stuff from the soil
- Measure what comes out

Digest soil with some combination of:
- Acid or base
- Heat

“Fingerprint” based on:
- How fast they move through a magnetic field when heated a lot (ICP-MS)
- How much light they give off when heated a lot (ICP-AES)
- How much light they absorb when heated a lot (GFAAS or FLAA)
Testing labs and methods

Methods vary in how strong the acid and/or heat are.

A stronger extraction pulls more out of the soil.

Digest soil with some combination of
- Acid or base
- Heat

“Fingerprint” based on
- How fast they move through a magnetic field when heated a lot (ICP-MS)
- How much light they give off when heated a lot (ICP-AES)
- How much light they absorb when heated a lot (GFAAS or FLAA)
Testing labs and methods

“Leachable” (EPA 1311 and 1312)

“Total recoverable” (EPA 3050B)

“Total digestion” (EPA 3051A)
Testing labs and methods

“Leachable”
(EPA 1311 and 1312)

“Total recoverable”
(EPA 3050B)

“Total digestion”
(EPA 3051A)
Testing labs and methods

“Leachable” (EPA 1311 and 1312)

“Total recoverable” (EPA 3050B)

“Total digestion” (EPA 3051A)

“Bioavailable”?
Best Management Practice

Primary goal: keep soil out of people’s mouths

Keep soil covered

Use raised beds with clean soil or growth medium (test or buy from source that tests!)

Clean tools, hands, boots before leaving garden

Avoid growing leafy greens or root vegetables

Use extra caution when gardening with children or pregnant/nursing women

Mulch or grass between beds!